data(geno_G2F)
data(pheno_G2F)
data(map_G2F)
data(info_environments_G2F)
data(soil_G2F)
METdata_G2F_training <-
create_METData(
geno = geno_G2F,
pheno = pheno_G2F[pheno_G2F$year%in%c(2014,2015,2016),],
map = map_G2F,
climate_variables = NULL,
compute_climatic_ECs = TRUE,
et0=T,
info_environments = info_environments_G2F[info_environments_G2F$year%in%c(2014,2015,2016),],
soil_variables = soil_G2F[soil_G2F$year%in%c(2014,2015,2016),],
path_to_save = "~/Data/PackageMLpredictions/learnmet_plus/benchmarking_g2f/results_g2f_forward_3"
)
METdata_G2F_new <-
create_METData(
geno = geno_G2F,
pheno = as.data.frame(pheno_G2F[pheno_G2F$year%in%2017,] %>% dplyr::select(-pltht,-yld_bu_ac,-earht)),
map = map_G2F,
climate_variables = NULL,
compute_climatic_ECs = TRUE,
et0=T,
info_environments = info_environments_G2F[info_environments_G2F$year%in%2017,],
soil_variables = soil_G2F[soil_G2F$year%in%2017,],
path_to_save = "~/Data/PackageMLpredictions/learnmet_plus/benchmarking_g2f/results_g2f_forward_3",
as_test_set = T
)
met_pred <- predict_trait_MET(
METData_training = METdata_G2F_training,
METData_new = METdata_G2F_new,
trait = 'yld_bu_ac',
prediction_method = 'xgb_reg_1',
use_selected_markers = F,
lat_lon_included = F,
year_included = F,
save_model = T,
num_pcs = 200,
include_env_predictors = T,
save_splits = T,
seed = 100,
save_processing = T,
path_folder = '~/g2f/res_xgb/cv0'
)